Проекты Raspberry Pi на Python с GPIO

В этой статье мы поговорим о том, как подключать к Raspberry Pi датчики и другие внешние устройства через GPIO порты платы. Для работы будем использовать Python и библиотеки. Если вы новичок в работе с распбери, рекомендуем прочитать статью об установке Python и библиотек для Raspberry Pi.

Подключение внешних устройств к Raspberry Pi

Отличие Raspberry Pi от Arduino

Среди любителей радиотехники и электроники каждый слышал о существовании таких устройств как Arduino и Raspberry Pi. Обе платы используются для решения схожих  задач, оба прекрасно подходят для начинающих. Но по сравнению с Ардуино Raspberry – это многофункциональный компьютер, на котором может запускаться операционная система.

Из основных отличий можно выделить тактовую частоту – Raspberry работает в 40 раз быстрее Ардуино, и объем оперативной памяти – у Raspberry памяти больше примерно в 128000 раз. За счет простоты управления и использования разрабатывать аппаратные проекты на Ардуино  предпочтительнее. Ардуино может работать с любыми датчиками или чипами, а Raspberry Pi не такая гибкая, для работы с датчиками требуются дополнительные аппаратные устройства. Raspberry Pi очень требовательна к питанию, напряжение должно быть строго 5 В на входе, в то время как для ардуино рекомендуемое питание 7-12 В, которое стабилизируется до 5 В.

Важное отличие заключается в среде, в которой пишется программа. С Arduino IDE работать намного проще, чем с Linux. Установка библиотек для написания программы требуется для обеих систем, но код на Ардуино будет написан проще и короче.

Raspberry Pi возможно использовать в режиме многозадачности, как обычный компьютер. Одновременно может работать несколько программ в фоновом режиме.

Для расширения возможностей можно совместно использовать обе платы. Для управления датчиками и сенсорами использовать Ардуино, а сложные вычислительные задачи оставить для Raspberry Pi.

Описание GPIO

Количество портов в более старых и новых моделях Raspberry Pi отличается –model A и model B оснащены 26 выводами общего назначения GPIO, в следующих версиях количество выводов увеличено до 40.

Существует несколько видов обозначений выводов:

  • BCM – нумеруются выходы микропроцессора Broadcom. Используются при работе со специальными пакетами Rpi.GPIO. В большом количестве проектов используется именно эта нумерация.
  • WiringPi – нумеруются контакты для пакета Wiring Pi. Это библиотека, похожая на библиотеки для Ардуино, для работы с GPIO контактами.
  • Обычная цифровая нумерация выходов на самой плате.

Расположение контактов изображено на рисунке. На картинке для удобства последние 14 контактов отделены – это и есть новые выходы, которые были добавлены в новых версиях платы.

Проекты Raspberry Pi

Описание контактов GPIO

Номер вывода BCM WiringPi Описание контакта
1 3v3 Питающий контакт на 3,3В
2 5v Питающий контакт на 5 В
3 BCM2 8 SDA
4 5v Питающий контакт на 5 В
5 BCM3 9 SCL
6 GND Земля
7 BCM4 7 GPCLK0
8 BCM14 15 TXD – отвечает за передачу данных
9 GND Земля
10 BCM15 16 RXD – отвечает за прием данных
11 BCM17 0 Вывод общего назначения
12 BCM18 1 PCM_C – используется в сочетании с ШИМ-методом.
13 BCM27 2 Контакт общего назначения
14 GND Земля
15 BCM22 3 Контакт общего назначения
16 BCM23 4 Контакт общего назначения
17 3V3 Питающее напряжение 3,3В
18 BCM24 5 Контакт общего назначения
19 BCM10 12 MOSI
20 GND Земля
21 BCM9 13 MISO
22 BCM25 6 Контакт общего назначения
23 BCM11 14 SCLK
24 BCM8 10 CS0
25 GND Земля
26 BCM7 11 CS1
27 BCM0 30 ID_SD
28 BCM1 31 ID_SD
29 BCM5 21 Контакт общего назначения
30 GND Земля
31 BCM6 22 Контакт общего назначения
32 BCM12 26 Контакт общего назначения
33 BCM13 23 Контакт общего назначения
34 GND Земля
35 BCM19 24 MISO
36 BCM16 27 Контакт общего назначения
37 BCM26 25 Контакт общего назначения
38 BCM20 28 MOSI
39 GND Земля
40 BCM21 29 SCLK

 

Выводы земля,  напряжение питания и другие аналогичные можно использовать любые, которые будут удобнее в конкретном проекте. Важно следить за тем, чтобы напряжение на GPIO было 3,3В, иначе контакт может быть вывеен из строя.

Среди выводов общего назначения имеются UART-контакты (на восьмом и десятом контактах). Они позволяют обеспечить взаимодействие Ардуино и Raspberry Pi. Также 4 вывода поддерживают I2C, главной задачей которых является коммуникация с периферией. Для верификации в коде нужно добавить строки

sudo apt-get install i2c-tools

sudo i2cdetect -y 1

Для осуществления доступа к I2C нужно подключить библиотеку smbus.

SPIподдерживают 11 выводов общего назначения. С помощью этого интерфейса можно настроить подключение нескольких устройств с помощью одной группы контактов.

Пример проекта: мигание светодиодов

Для работы понадобятся плата Raspberry Pi, светодиод, резистор на 200 Ом и соединительные провода. Анод светодиода (длинная ножка) нужно подключить через резистор к одному из цифровых выводов, например GPIO24, катод (короткая ножка) – к земле. Макет подключения представлен на рисунке. Резистор в данной схеме нужен для того, чтобы уберечь светодиод от перегорания. Выбрать правильный номинал можно пользуясь законом Ома R=U/I. Плата работает от напряжения 3,3В. Номинал, который будет получен по формуле – минимальный, можно выбирать сопротивление больше, но в этом случае яркость светодиода будет несколько ниже.

Проекты Raspberry Pi

Теперь нужно написать программу. Код будет написан в установленной версии Python 2. Для этого нужно открыть среду Python 2 (IDLE) и нажать «новый файл».

Проекты Raspberry Pi

В окно редактора нужно написать скетч, который заставит светодиод загореться на 10 секунд и отключит его. В первую очередь нужно выбрать нумерацию выходов. Как говорилось выше, существует несколько типов нумерации. В данном случае будет использоваться нумерация BCM.

Сам код выглядит следующим образом:


from RPi import GPIO

from time import sleep //первые 2 строки включают библиотеки для совместной работы с GPIO и sleep

GPIO.setmode(GPIO.BCM)  //этой строкой выбирается нумерация контактов

GPIO.setup(24, GPIO.OUT) //чтобы управлять светодиодом или другим устройством, нужно задать OUT. Для того чтобы считывать сигнал сенсора, нужно ввести IN.

GPIO.output(24, True) //подача истины на контакты

sleep(10) //светодиод загорается на 10 секунд, ожидание

GPIO.output(24, False)

GPIO.cleanup() //сброс всех настроек портов, чтобы они не мешали следующей программе.

Нужно нажать запуск программы с помощью F5 или меню Run/Run Module.

Код можно немного изменить, чтобы светодиод включался и выключался с определенной частотой. Для этого нужно добавить оператор while вместо строк GPIO.output и Sleep.В цикле нужно задать частоту, с которой будет мигать светодиод. В данном случае он будет мигать раз в 1 секунду.


while True:

GPIO.output(24, True)

sleep(1)

GPIO.output(24, False)

sleep(1)

Большим недостатком такой программы будет то, что она будет повторяться бесконечно и остановить штатным методом ее будет невозможно. Для этого нужно ввести дополнительно конструкцию, прерывающую работу при наборе на клавиатуре комбинации Ctrl+C.


try:

while True:

GPIO.output(24, True)

sleep(0.5)

GPIO.output(24, False)

sleep(0.5)

except KeyboardInterrupt:

print 'program stop'

Программу нужно сохранить, нажав ctrl+S. Затем нужно нажать F5, светодиод начнет мигать с периодичностью раз в секунду. Чтобы остановить выполнение программы, нужно нажать ctrl+C.

Выводы

В этой статье мы приступили к новой большой теме и сделали первые шаги в программировании на Python под Raspberry с использование GPIO. Возможности микроконтроллера существенно превышают привычный Arduino, поэтому для создания по-настоящему умных устройств придется осваиваться с новыми инструментами для работы с периферией. В дальнейших статьях мы продолжим наши эксперименты.

ПОДЕЛИТЬСЯ

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here